The Mathematical Association of Victoria SPECIALIST MATHEMATICS

Trial written examination 1

2006
Reading time: 15 minutes
Writing time: 1 hour

Student's Name:

QUESTION AND ANSWER BOOK

Structure of book

Number of questions Number of questions to be answered	Number of marks	
9	9	40

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

This page is blank

Instructions

Answer all questions in the spaces provided.
A decimal approximation will not be accepted if an exact answer is required to a question.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Take the acceleration due to gravity to have magnitude $g \mathrm{~m} / \mathrm{s}^{2}$, where $g=9.8$.

Question 1

a. A coin of mass $m \mathrm{~kg}$ is just prevented from slipping down a book when it is inclined at an angle of θ to the horizontal.
i. On the diagram below mark in all the forces acting on the coin.

1 mark
ii. Show that the co-efficient of friction between the book and the coin is given
by $\mu=\tan (\theta)$
\qquad
\qquad
\qquad
\qquad
\qquad
1 mark
b. The book is now raised so that it is inclined at an angle of 2θ to the horizontal, and a force of T newtons acts on the coin, up and parallel to the book. The coin is just on the point of moving up the book.
i. On the diagram below mark in all the forces acting on the coin.

ii. Show that $T=\frac{m g \sin (3 \theta)}{\cos (\theta)}$
\qquad

Question 2

$y=\cos \left(x^{2}\right)$ is a solution of the differential equation $x \frac{d^{2} y}{d x^{2}}+a \frac{d y}{d x}+b x^{3} y=0$ where $a, b \in R$. Find the values of a and b.
\qquad

Question 3

Consider the relation $2 x^{2}+12 x+y^{2}-8 y+22=0$
Find an expression for $\frac{d y}{d x}$ in terms of both x and y. Hence find the value of x for which the tangent to the curve is parallel to the x-axis.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4

a. Given $P(z)=z^{4}+p z^{2}-8$, where p is a real constant. If $P(2 i)=0$ show that $p=2$
\qquad
\qquad
\qquad
\qquad
\qquad
1 mark
b. Find all the roots of $z^{4}+2 z^{2}-8=0$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

Question 5

a. Show that $\frac{d}{d x}\left(\tan ^{-1}\left(\frac{3 x^{2}}{4}\right)\right)=\frac{24 x}{9 x^{4}+16}$
\qquad
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. Hence find the exact value of $\int_{0}^{\frac{2 \sqrt{3}}{3}} \frac{x}{9 x^{4}+16} d x$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks

PART I - continued

Question 6

a. If $f(x)=\frac{x}{\sqrt{2 x-3}}$ then gradient function $f^{\prime}(x)$ can be represented as $\frac{a x+b}{\sqrt{(2 x-3)^{3}}}$.
Find the exact values of a and b.
\qquad
3 marks
b. Find, using calculus, the exact area A bounded by the curve $y=\frac{x}{\sqrt{2 x-3}}$, the x axis and the lines $x=2$
and $x=6$.
\qquad

Question 7

A particle moves so that its position vector is given by $\underset{\sim}{r}(t)=(3+4 \cos (2 t)) \underset{\sim}{i}+(-2+3 \sin (2 t)) \underset{\sim}{j}$ for $t \geq 0$
a. Find the Cartesian equation of the path.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2 marks
b. Determine the speed of the particle and find the maximum and minimum speeds.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3 marks

PART I - continued

Question 8
Consider the ellipse with the equation $\frac{(x-c)^{2}}{16}+\frac{(y+2)^{2}}{9}=1$, where c is a real constant.
If the domain is $[-1,7]$
If the domain is $[-1,7]$
a. Show that $c=3$

1 mark
b. Sketch the graph of the ellipse on the following set of axes.

2 marks

Question 9

a. Sketch the graph of $y=\frac{12}{12+4 x-x^{2}}$ on the axes below, clearly indicating the equations of all asymptotes, and the coordinates of any stationary points and axial intercepts.
\qquad
\qquad
\qquad
\qquad
\qquad

3 marks

PART I - continued
b. The area bounded by the curve $y=\frac{12}{12+4 x-x^{2}}$, the co-ordinate axes and the line $x=3$, can be expressed in the form $\log _{e}(\sqrt{p})$.
Find the exact value of p.
\qquad
3 marks

SPECIALIST MATHEMATICS

Written examinations 1 and 2

FORMULA SHEET

Directions to students

Detach this formula sheet during reading time.
This formula sheet is provided for your reference.

Specialist Mathematics Formulas

Mensuration

area of a trapezium:
curved surface area of a cylinder:
volume of a cylinder:
volume of a cone:
volume of a pyramid:
volume of a sphere:
area of a triangle:
sine rule:
cosine rule:
$\frac{1}{2}(a+b) h$
$2 \pi r h$
$\pi r^{2} h$
$\frac{1}{3} \pi r^{2} h$
$\frac{1}{3} A h$
$\frac{4}{3} \pi r^{3}$
$\frac{1}{2} b c \sin A$
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Coordinate geometry

ellipse: $\quad \frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1 \quad$ hyperbola: $\quad \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1$

Circular (trigometric) functions

$\cos ^{2}(x)+\sin ^{2}(x)=1$
$1+\tan ^{2}(x)=\sec ^{2}(x)$

$$
\cot ^{2}(x)+1=\operatorname{cosec}^{2}(x)
$$

$\sin (x+y)=\sin (x) \cos (y)+\cos (x) \sin (y)$
$\sin (x-y)=\sin (x) \cos (y)-\cos (x) \sin (y)$
$\cos (x+y)=\cos (x) \cos (y)-\sin (x) \sin (y)$
$\cos (x-y)=\cos (x) \cos (y)+\sin (x) \sin (y)$
$\tan (x+y)=\frac{\tan (x)+\tan (y)}{1-\tan (x) \tan (y)}$

$$
\tan (x-y)=\frac{\tan (x)-\tan (y)}{1+\tan (x) \tan (y)}
$$

$\cos (2 x)=\cos ^{2}(x)-\sin ^{2}(x)=2 \cos ^{2}(x)-1=1-2 \sin ^{2}(x)$
$\sin (2 x)=2 \sin (x) \cos (x)$
$\tan (2 x)=\frac{2 \tan (x)}{1-\tan ^{2}(x)}$

function	$\sin ^{-1}$	$\cos ^{-1}$	$\tan ^{-1}$
domain	$[-1,1]$	$[-1,1]$	R
range	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$	$[0, \pi]$	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Algebra (Complex numbers)

$z=x+y i=r(\cos \theta+i \sin \theta)=r \operatorname{cis} \theta$
$|z|=\sqrt{x^{2}+y^{2}}=r$
$z_{1} z_{2}=r_{1} r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)$
$z^{n}=r^{n} \operatorname{cis}(n \theta)$ (de Moivre's theorem)
$-\pi<\operatorname{Arg} z \leq \pi$
$\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \operatorname{cis}\left(\theta_{1}-\theta_{2}\right)$

Calculus

$\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\frac{d}{d x}\left(e^{a x}\right)=a e^{a x}$
$\frac{d}{d x}\left(\log _{e}(x)\right)=\frac{1}{x}$
$\frac{d}{d x}(\sin (a x))=a \cos (a x)$
$\frac{d}{d x}(\cos (a x))=-a \sin (a x)$
$\frac{d}{d x}(\tan (a x))=a \sec ^{2}(a x)$
$\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
$\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

$$
\begin{aligned}
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1 \\
& \int e^{a x} d x=\frac{1}{a} e^{a x}+c \\
& \int \frac{1}{x} d x=\log _{e}|x|+c \\
& \int \sin (a x) d x=-\frac{1}{a} \cos (a x)+c \\
& \int \cos (a x) d x=\frac{1}{a} \sin (a x)+c \\
& \int \sec ^{2}(a x) d x=\frac{1}{a} \tan (a x)+c \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c, a>0 \\
& \int \frac{-1}{\sqrt{a^{2}-x^{2}}} d x=\cos ^{-1}\left(\frac{x}{a}\right)+c, a>0 \\
& \int \frac{a}{a^{2}+x^{2}} d x=\tan ^{-1}\left(\frac{x}{a}\right)+c
\end{aligned}
$$

product rule:

$$
\frac{d}{d x}(u v)=u \frac{d v}{d x}+v \frac{d u}{d x}
$$

quotient rule:

$$
\frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

chain rule:

$$
\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}
$$

Euler's method:

$$
\text { If } \frac{d y}{d x}=f(x), x_{0}=a \text { and } y_{0}=b, \text { then } x_{n+1}=x_{n}+h \text { and } y_{n+1}=y_{n}+h f\left(x_{n}\right)
$$

acceleration:

$$
a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)
$$

constant (uniform) acceleration: $v=u+a t$

$$
s=u t+\frac{1}{2} a t^{2}
$$

$$
v^{2}=u^{2}+2 a s
$$

$$
s=\frac{1}{2}(u+v) t
$$

Vectors in two and three dimensions

$$
\underset{\sim}{\mathrm{r}}=x \underset{\sim}{\mathrm{i}}+y \underset{\sim}{\mathrm{j}}+z \underset{\sim}{\mathrm{k}}
$$

$|\underset{\sim}{\mathbf{r}}|=\sqrt{x^{2}+y^{2}+z^{2}}=r$
$\underset{\sim}{r}{ }_{1} \cdot \underset{\sim}{r}{ }_{2}=r_{1} r_{2} \cos \theta=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$
$\underset{\sim}{\dot{\mathrm{i}}}=\frac{d \underset{\sim}{\mathrm{r}}}{d t}=\frac{d x}{d t} \mathrm{i}+\frac{d y}{d t} \underset{\sim}{\mathrm{j}}+\frac{d z}{d t} \underset{\sim}{\mathrm{k}}$

Mechanics

momentum:
equation of motion:
$\mathrm{p}=m \underset{\sim}{\mathrm{v}}$
$\mathrm{R}=m \mathrm{a}$
friction:
$F \leq \mu N$

