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Instructions

Answer all questions in the spaces provided. 

A decimal approximation will not be accepted if an exact answer is required to a question. 

In questions where more than one mark is available, appropriate working must be shown.   

Unless otherwise indicated, the diagrams in this book are not drawn to scale.     

Take the acceleration due to gravity to have magnitude g m/s2, where g = 9.8. 

	 	

PART I - continued
TuRn oveR

Question 1

a. A coin of mass m kg is just prevented from slipping down a book when it is inclined at an angle of θ  to the 
horizontal.

 i. On the diagram below mark in all the forces acting on the coin.

1	mark

 ii. Show that the co�ef��cient of friction between the book and the coin is givenShow that the co�ef��cient of friction between the book and the coin is given  
by µ θ= ( )tan

1	mark
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b. The book is now raised so that it is inclined at an angle of  2θ  to the horizontal, and a force of T  newtons 
acts on the coin, up and parallel to the book.  The coin is just on the point of moving up the book.

 i. On the diagram below mark in all the forces acting on the coin.

1	mark

 

 ii. Show thatShow that  T
mg

=
( )

( )
sin

cos

�θ
θ

3	marks

 

2  

PART I - continued
TuRn oveR
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Question 2

y x= ( )cos 2 is	a	solution	of	the	differential	equation	 x
d y
dx

a
dy
dx

b x y
2

2
� 0+ + =

	
where a b R, ∈ .				

Find	the	values	of		a	 and		b.

4	marks

Question 3

Consider	the	relation	 2 12 8 22 02 2x x y y+ + − + =

Find	an	expression	for	 dy
dx

	in	terms	of	both	x	and	y. Hence find the value of x	for	which	the	tangent	to	the	

curve	is	parallel	to	the	x-axis.

3	marks

PART I - continued
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Question 4

a. Given P z z pz( ) = + −� 2 8 , where p is a real constant.  If P i2 0( ) =  show that p = 2

1	mark

b. Find all the roots of  z z� 22 8 0+ − =

2	marks

PART I - continued
TuRn oveR

SM Ex1-06.indd   6 4/9/06   3:59:56 PM



 � MAV SPECMATH EXAM 1/2006 

Question 5

a. Show that  d
dx

x x
x

tan− 











=
+

1
2

�
�
�

2�
9 16

2	marks

b. Hence ��nd the exact value of  x
x

dx
9 16�

0

2 �
�

+
⌠
⌡

.

2	marks

PART I - continued
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Question 6

a. If  f x x
x

( ) =
−2 �

 then gradient function ′ ( )f x  can be represented as ax b

x

+

−( )2 �
�

. 

 Find the exact values of  a and b. 

3	marks

b. Find, using calculus, the exact area A  bounded by the curve y x
x

=
−2 �

, the x axis and the lines x = 2  
and x = 6 .

3	marks

PART I - continued
TuRn oveR
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Question 7

A	particle	moves	so	that	its	position	vector	is	given	by
  
r t t i t j( ) = + ( )( ) + − + ( )( )� � 2 2 � 2cos sin for		t ≥ 0

a. Find the Cartesian equation of the path.

2	marks

b. Determine the speed of the particle and ��nd the maximum and minimum speeds. 

3	marks

PART I - continued
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Question 8

Consider	the	ellipse	with	the	equation
x c y−( )

+
+( )

=
2 2

16

2

9
1,	where	c	is	a	real	constant.		

If	the	domain	is	 − 1 �,

a. Show that c = �

1	mark

b. Sketch the graph of the ellipse on the following set of axes.

2	marks

x
-6 -4 -2 2 4 6 8

y

-6

-4

-2

2

4

6

 

PART I - continued
TuRn oveR
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Question 9

a. Sketch the graph of y
x x

=
+ −

12
12 � 2

 on the axes below, clearly indicating the equations of all asymptotes, 

and the coordinates of any stationary points and axial intercepts.

3	marks

x

y

1

2–4 –2 4 60

2

3

–1

–2

–3

PART I - continued
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b. The area bounded by the curve y
x x

=
+ −

12
12 4 2

, the co�ordinate axes and the line x = 3, can be 

 expressed in the form log
e

p( ). 
 Find the exact value of  p.

3	marks

end of PART I quesTIon And AnsweR book
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Specialist Mathematics Formulas

Mensuration

area of a trapezium: 
1
2 a b h+( )

curved surface area of a cylinder: 2π rh

volume of a cylinder: π r2h

volume of a cone: 1
3

2π r h

volume of a pyramid: 1
3 Ah

volume of a sphere: 4
3

3π r

area of a triangle: 
1
2 bc Asin

sine rule: 
a

A
b

B
c

Csin sin sin
= =

cosine rule: c2 = a2 + b2 � 2ab cos C

Coordinate geometry

ellipse:  x h
a

y k
b

−( )
+

−( )
=

2

2

2

2 1 hyperbola:   x h
a

y k
b

−( )
−

−( )
=

2

2

2

2 1

Circular (trigometric) functions
cos2(x) + sin2(x) = 1

1 + tan2(x) = sec2(x) cot2(x) + 1 = cosec2(x)

sin(x + y) = sin(x) cos(y) + cos(x) sin(y) sin(x � y) = sin(x) cos(y) � cos(x) sin(y)

cos(x + y) = cos(x) cos(y) � sin(x) sin(y) cos(x � y) = cos(x) cos(y) + sin(x) sin(y)

tan( ) tan( ) tan( )
tan( ) tan( )

x y x y
x y

+ = +
−1  tan( ) tan( ) tan( )

tan( ) tan( )
x y x y

x y
− = −

+1

cos(2x) = cos2(x) � sin2(x) = 2 cos2(x) � 1 = 1 � 2 sin2(x)

sin(2x) = 2 sin(x) cos(x) tan( ) tan( )
tan ( )

2 2
1 2x x

x
=

−

function sin�1 cos�1 tan�1

domain [�1, 1] [�1, 1] R

range −





π π
2 2

, [0, !] −





π π
2 2

,

Algebra (Complex numbers)
z = x + yi = r(cos θ + i sin θ) = r cis θ 

z x y r= + =2 2  �π < Arg z ≤ π

z1z2 = r1r2 cis(θ1 + θ2)  z
z

r
r

1

2

1

2
1 2= −( )cis θ θ

zn = rn cis(nθ) (de Moivre�s theorem) © VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2006
REPRODUCED WITH PERMISSION MATHEMATICAL ASSOCIATION OF VICTORIA 2006
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Calculus
d
dx

x nxn n( ) = −1

 
∫ =

+
+ ≠ −+x dx

n
x c nn n1

1
11 ,

d
dx

e aeax ax( ) =
 

∫ = +e dx
a

e cax ax1

d
dx

x
xelog ( )( )= 1

 
∫ = +1

x
dx x celog

d
dx

ax a axsin( ) cos( )( )=
 

∫ = − +sin( ) cos( )ax dx
a

ax c1

d
dx

ax a axcos( ) sin( )( )= −
 

∫ = +cos( ) sin( )ax dx
a

ax c1

d
dx

ax a axtan( ) sec ( )( )= 2

 
∫ = +sec ( ) tan( )2 1ax dx

a
ax c

d
dx

x
x

sin−( ) =
−

1

2

1

1
( )

 

∫
−

= 





+ >−1
0

2 2

1

a x
dx x

a
c asin ,

d
dx

x
x

cos−( ) = −

−
1

2

1

1
( )

 

∫ −

−
= 





+ >−1
0

2 2

1

a x
dx x

a
c acos ,

d
dx

x
x

tan−( ) =
+

1
2

1

1
( )

 
∫

+
= 





+−a
a x

dx x
a

c
2 2

1tan

product rule:  
d
dx

uv u dv
dx

v du
dx

( ) = +

quotient rule:  d
dx

u
v

v du
dx

u dv
dx

v






=
−
2

chain rule:  
dy
dx

dy
du

du
dx

=

Euler’s method:  If 
dy
dx

f x= ( ),  x0 = a and y0 = b, then xn + 1 = xn + h  and  yn + 1 = yn + h f(xn)

acceleration:  a d x
dt

dv
dt

v dv
dx

d
dx

v= = = = 





2

2
21

2

constant (uniform) acceleration: v = u + at s = ut + 
1

2
at2 v2 = u2 + 2as s =  

1

2
 (u + v)t

TURN OVER
© VICTORIAN CURRICULUM AND ASSESSMENT AUTHORITY 2006
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END OF FORMULA SHEET

Vectors in two and three dimensions

r i j k
~ ~ ~ ~

= + +x y z

| r
~ | =    x y z r2 2 2+ + =                                  r

~ 1. r
~ 2 = r1r2 cos θ = x1x2 + y1y2 + z1z2

!r
r

i j k
~

~
~ ~ ~

= = + +
d

dt
dx
dt

dy
dt

dz
dt

Mechanics

momentum:                                                     p v
~ ~

= m

equation of motion:                                         R a
~ ~

= m

friction:                                                           F ≤ µN
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